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Abstract
Many marine species are shifting their distributions in response to changing ocean 
conditions, posing significant challenges and risks for fisheries management. Species 
distribution models (SDMs) are used to project future species distributions in the 
face of a changing climate. Information to fit SDMs generally comes from two main 
sources: fishery- independent (scientific surveys) and fishery- dependent (commercial 
catch) data. A concern with fishery- dependent data is that fishing locations are not 
independent of the underlying species abundance, potentially biasing predictions of 
species distributions. However, resources for fishery- independent surveys are in-
creasingly limited; therefore, it is critical we understand the strengths and limitations 
of SDMs developed from fishery- dependent data. We used a simulation approach to 
evaluate the potential for fishery- dependent data to inform SDMs and abundance 
estimates and quantify the bias resulting from different fishery- dependent sampling 
scenarios in the California Current System (CCS). We then evaluated the ability of the 
SDMs to project changes in the spatial distribution of species over time and compare 
the time scale over which model performance degrades between the different sam-
pling scenarios and as a function of climate bias and novelty. Our results show that 
data generated from fishery- dependent sampling can still result in SDMs with high 
predictive skill several decades into the future, given specific forms of preferential 
sampling which result in low climate bias and novelty. Therefore, fishery- dependent 
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data may be able to supplement information from surveys that are reduced or elimi-
nated for budgetary reasons to project species distributions into the future.

K E Y W O R D S
climate bias, climate change, extrapolation, novelty, species distribution models, virtual species

1  |  INTRODUC TION

The world's climate is changing at an unprecedented rate. Over the 
last century, global average temperature has increased by 0.85°C, 
resulting in biological responses across terrestrial, freshwater and 
marine environments (Cheung et al., 2015; Morley et al., 2018; 
Nye et al., 2009; Pecl et al., 2017). Species may respond to a 
changing climate in a variety of ways, including acclimatizing, 
adapting, moving to an area with a more suitable environment or 
even dying. The responses of species to climate change, such as 
the rate of change in distributions, are more pronounced in the 
ocean, which absorbs the majority of the excess atmospheric heat 
from greenhouse gas emissions (Pinsky et al., 2019; Poloczanska 
et al., 2013, 2016; Sorte et al., 2010). Changes in species distri-
butions pose significant challenges and risks to resource manage-
ment and the communities and economies that depend on marine 
resources (Pinsky et al., 2019). This is particularly so for fisheries 
that are faced with species shifting outside of historical fishing 
areas or across management boundaries (Ishimura et al., 2013; 
Sumaila et al., 2020). In light of this, there is an increasing need to 
predict how marine species distributions will respond to changing 
conditions. Accurate projections of future species distributions 
can inform our understanding of potential impacts on fisheries 
and fishing communities, climate change risk assessments, and 
sustainable fisheries management that can anticipate, prepare and 
account for these changes (Rogers et al., 2019; Selden et al., 2019; 
Smith, Muhling, et al. 2021).

Correlative species distribution models (SDMs) are increasingly 
being used to project future species distributions to aid manage-
ment decision making in the face of a changing climate (Cheung 
et al., 2009; Hazen et al., 2013). SDMs use statistical methods to re-
late species occurrence or abundance to underlying environmental 
conditions, and then use those fitted relationships to predict current 
and future distribution patterns (Elith & Leathwick, 2009; Guisan 
& Thuiller, 2005). SDMs generally perform better when predicting 
within the same time and space as the data used for calibration 
(e.g. interpolation), but performance can decline when projecting 
into novel environmental conditions and locations (i.e. extrapola-
tion) (Meyer & Pebesma, 2021; Muhling et al., 2020; Sequeira et al., 
2018). However, in some cases, SDMs can perform well when pre-
dicting abundance and distribution under novel conditions (Becker 
et al., 2019). As climate change continues to cause novel conditions 
to emerge (Smith et al., 2022), understanding when models can per-
form well and what factors impact SDM performance under novel 
conditions is increasingly important.

An important factor that can affect SDM performance, particu-
larly with regard to their ability to accurately project species distri-
butions far into the future, is quality of the training data used to fit 
the models. In the case of marine fisheries, occurrence and abun-
dance data mainly come from two sources, fishery- independent 
and/or fishery- dependent data. Fishery- independent data are 
often collected through expensive research programmes which 
conduct standardized scientific surveys over large areas. Fishery- 
independent data collected via scientifically designed and standard-
ized sampling gear and designs are particularly valuable as these 
sampling properties facilitate straightforward empirical estimation 
of population density and abundance. However, due to high cost and 
logistical challenges, fishery- independent data may not be available 
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    |  3KARP et al.

for all species, seasons and regions (Dennis et al., 2015). This is par-
ticularly the case for many highly migratory species, which tend to 
have large and dynamic ranges (Lynch et al., 2018).

Fishery- dependent data often come from scientific observers on 
commercial fishing vessels, fish tickets (i.e. landing receipts) and/or 
industry- reported logbooks and are frequently the only distribution 
data available for many species. They may provide some advantages 
over fishery- independent data, particularly with respect to the num-
ber of observations available. Additionally, fishery- dependent data 
may actually be preferred in certain circumstances. For example, 
when the goal is to understand how a species may interact with 
the fishery (Crear et al., 2021). However, a potential concern with 
fishery- dependent data is their non- probabilistic, preferential sam-
pling scheme. Economic, social and management factors drive the 
distribution of fishing locations; for example, fishers actively seek 
out areas with expected high concentrations of their target spe-
cies (Pennino et al., 2019), but also may make decisions on where 
to fish based on local knowledge and experience (St. Martin & Hall- 
Arber, 2008), management restrictions such as bycatch avoidance, 
closed areas and landings requirements, as well as economic con-
siderations such as fuel costs influencing the distance they are able 
or willing to travel from ports (Bucaram et al., 2013; Daw, 2008; 
Sampson, 1991; Smith & Wilen, 2003; Wilen, 2004).

The locations of fishing activity are therefore not random and 
not independent of the response variable (e.g. species abundance) 
(Conn et al., 2017; Diggle et al., 2010; Pennino et al., 2019). Such 
preferential sampling violates a statistical assumption that sam-
pling locations have been chosen independently of the value ex-
pected at a given location and can result in biased predictions of 
abundance and distribution (Alglave et al., 2022; Conn et al., 2017; 
Diggle et al., 2010; Pennino et al., 2019; Rufener et al., 2021). 
Additionally, the non- random nature of fishing locations often re-
sults in the fishery- dependent data being spatially clustered relative 
to the underlying spatiotemporal distribution of the target species, 
which can result in poor representation within the data of the com-
plete range of environmental conditions present in an area (Kadmon 
et al., 2004). The quality of an SDM and its ability to provide accu-
rate predictions, particularly under novel conditions, can be strongly 
affected by such spatially and environmentally biased sampling 
schemes (Baker et al., 2022; Kadmon et al., 2004; Støa et al., 2018; 
Yates et al., 2018).

Despite a general understanding of these potential biases and 
impacts on SDM performance, more work is needed in assessing 
the relative magnitude of such biases coming from different types 
of fishery- dependent sampling and understanding the factors that 
impact the relative magnitude. Several recent studies show that 
fishery- dependent data does not always result in biased predictions 
and may still be appropriate to analyse with standard statistical ap-
proaches (Ducharme- Barth et al., 2022; Pennino et al., 2016), or can 
be complementary to fishery- independent data using integrated 
methods (Alglave et al., 2022; Rufener et al., 2021). Therefore, 
considering that resources are increasingly limited at agencies 
for fishery- independent surveys, it is critical we understand the 

strengths and limitations of SDMs developed for evaluating future 
fish distributions from fishery- dependent data.

In this study, we explore the potential for fishery- dependent 
data to inform SDMs and abundance estimates and quantify the bias 
resulting from different fishery- dependent sampling scenarios in the 
California Current System (CCS; Figure 1). Specifically, we ask:

1. How do various types of fishery- dependent sampling affect 
SDM performance, relative to a randomized sampling process?

2. What is the timescale over which future SDM performance 
degrades, and is it affected by the type of fishery- dependent 
sampling?

We use a simulation approach to generate the ‘true’ distribution 
of a species based on static relationships between abundance and 
environmental variables. We then simulate a random sampling and 
several different fishery- dependent sampling processes to collect 
species observations and fit two types of SDMs (generalized addi-
tive models (GAMs) and Boosted Regression Trees (BRTs)) to those 
data. We then evaluate the ability of the SDMs to project changes 
in abundance, centre of gravity and spatial patterns of distribution 
into the future, and compare the time scale over which model per-
formance degrades between the different sampling scenarios and 
as a function of climate bias and novelty. This simulation approach 

F I G U R E  1  Map of the study area, showing the entire ROMS 
domain. The black outline off the coast of California (CA), Oregon 
(OR) and Washington (WA) indicates the United States exclusive 
economic zone (EEZ). The ports used for the distance from port 
sampling scenarios are labelled and indicated with black squares on 
the map.
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4  |    KARP et al.

is advantageous because it allows us to test the impacts of different 
sampling scenarios on model performance against a known ‘truth’, 
which is not possible with in situ data.

2  |  METHODS

2.1  |  General framework

To quantify the impact of fishery- dependent sampling bias on the 
ability of SDMs to predict current and project future species dis-
tributions, we used a simulation- estimation process consisting of 
four main steps (Figure 2): (1) develop an operating model (OM) to 
simulate a virtual species distribution, (2) sample the virtual species 
distribution with simulated random and fishery- dependent sampling 
procedures, (3) use the simulated data (training period 1985– 2010) 
to fit an estimation model (the SDM), and project the SDM from 
2011 to 2100 under climate change and (4) evaluate performance of 
fitted models by comparing the output of SDM predictions against 
the ‘true’ simulated observations. Here, we provide an overview of 
the key aspects of the simulation. More details can be found in the 
Supplemental Methods and in Table S1, and the Rcode for this simu-
lation can be found on github (https://github.com/Melis sa- Karp/
Fishe ry- depen dent- SDM- proje ctions).

2.2  |  Operating model

We used the virtualspecies package (Leroy et al., 2016) in R version 
3.6.1 (R Core Team, 2019) to build our operating model. This enables 
us to not only simulate species- environment responses and convert 
habitat suitability to presence– absences or abundance but also in-
corporate biases into the process of sampling occurrences.

2.2.1  |  Environmental variables

Environmental data were obtained from a California Current System 
(CCS) configuration of the Regional Ocean Modeling System (ROMS). 
This configuration covers 30– 48° N and inshore of 134° W, with 0.1 
degree (7– 11 km) horizontal resolution and 42 terrain- following ver-
tical levels (Pozo Buil et al., 2021; Veneziani et al., 2009). For pro-
jections of ocean conditions, the CCS ROMS model was forced by 
output for 1980– 2100 from a global Earth System Model (ESM; 
HadGEM2- ES) under the RCP8.5 emission scenario. For this study, 
1985– 2010 was considered the ‘historical’ period, and 2011– 2100 
the ‘future’ period, but both periods were sourced from the same 
ESM- forced projection. To correct for biases in the ESM used to 
force ROMS, a ‘time- varying delta’ method was applied before per-
forming the downscaling with ROMS, in which ESM changes (calcu-
lated as departures from the 1980– 2010 climatology) were added to 
the observed 1980– 2010 climatology (Pozo Buil et al., 2021; Smith, 
Muhling, et al. 2021). To project regional biogeochemical change 

(including phytoplankton biomass), ROMS is coupled to the biogeo-
chemical model NEMUCSC (Fiechter et al., 2014, 2018)— an adapted 
version of the North Pacific Ecosystem Model for Understanding 
Regional Oceanography (NEMURO; Kishi et al., 2007). NEMUCSC 
consists of three limiting macronutrients, two phytoplankton size- 
classes, three zooplankton size- classes and three detritus pools. 
Following the approach in Fiechter et al. (2018), NEMUCSC was 
coupled offline to the ROMS downscaled projection (Pozo Buil 
et al., 2021). Environmental variables of interest were sea surface 
temperature (SST; C), mixed layer depth (MLD; m), surface chlo-
rophyll- a (Chl- a; mg m- 3) and zooplankton integrated over 200 m 
(zoo_200; mmol N m- 2).

We used only one ESM to keep the simulation manageable, and 
selected HadGEM2- ES because it is at the upper end of projected 
end- of- century warming for the CMIP5 ensemble (~4°C) and thus 
maximizes the signal- to- noise ratio. We note that our results may 
be somewhat specific to the CCS, and that the magnitude of change 
(and trends in specific variables) projected by HadGEM2- ES can dif-
fer considerably to that projected by other ESMs and within other 
systems (Pozo Buil et al., 2021). However, the directionality of pro-
jected change in offshore waters, which are the focus of this study, 
are consistent across three ESMs examined in Pozo Buil et al. (2021).

2.2.2  |  Generating the species 
distribution and abundance

We based the simulated species on a pelagic predator which responds 
to sea- surface temperature (SST), prey fields and mixed layer depth 
(MLD) in the CCS and is present during spring. We chose to model 
our species to resemble a large pelagic predator (e.g. characteris-
tics similar to albacore (Thunnus alalunga, Scombridae) or swordfish 
(Xiphias gladius, Xiphiidae)) because these species have high capac-
ity to follow changing environmental conditions, potentially leading 
to greater future issues with cross- boundary management, viability 
of home- ports, bycatch interactions, and other consequences of 
climate- induced range shifts (Smith, Tommasi, et al. 2021). In addi-
tion, large pelagic predators are commercially important species for 
US West Coast fishermen (Frawley et al., 2021) but are not routinely 
sampled as part of fisheries- independent surveys.

Spatial biomass of our virtual pelagic predator was simulated 
through a two- step process (Brodie et al., 2020). First, we simu-
lated habitat suitability based on environmental and biological data 
and defined species preferences (Figure S7; see Supplementary 
Methods and Table S1 for more detailed information on species pref-
erences). The environmental and biological variables used to force 
the species habitat suitability were SST (°C), MLD (m) and the dis-
tribution of a simulated prey species, which was forced by SST and 
zooplankton biomass integrated over the upper 200 m of the water 
column (mmol N m−2). We chose to focus on the spring season, when 
temperatures typically warm rapidly in the northern CCS. Each vari-
able was therefore averaged over the spring months (March– May) to 
capture typical spring conditions in the study system.
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F I G U R E  2  Flow diagram illustrating the four main steps of the simulation process.
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6  |    KARP et al.

Second, habitat suitability for the simulated species was con-
verted into presence– absence using the probability method in virtu-
alspecies. This approach does not use a defined threshold or cut- off 
for presence– absence. Instead, it uses a logistic function to con-
vert the environmental suitability of each cell into a probability of 
occurrence. The probability of occurrence is then used to sample 
presence– absence in each cell using a random draw that is weighted 
by the probability of occurrence (Leroy et al., 2016; Meynard et al., 
2013). Biomass (kg) was then calculated as a function of the habitat 
suitability at locations where it was classified as present and deter-
mined to be 0 where the species was classified as absent, for each 
year of the simulation. Specifically, biomass was estimated from a 
log- normal distribution estimated from albacore (the model species 
for our simulated large pelagic predator) biomass in the CCS, and 
when the species was present, biomass at each grid cell was multi-
plied by habitat suitability of that same grid cell to provide habitat- 
informed biomass (see Table S1). Albacore biomass in the CCS was 
considered as the average biomass vulnerable to the US surface fleet 
from 1999 to 2015 (Tommasi & Teo, 2020).

2.2.3  |  Sampling process: Simulating fishery- 
dependent data collection

We sampled the simulated species distribution according to 14 dif-
ferent sampling scenarios which fall under five general types of sam-
pling types: random sampling (one scenario), preferential sampling 
(one scenario), constrained by distance to port (eight scenarios), con-
strained by bycatch avoidance (one scenario) and constrained by a 
closed area (three scenarios). To determine the locations of fishing 
activity for each of the scenarios, except Random, we built a ‘fishing 
suitability’ raster using a similar process as was used to build the 
habitat suitability rasters for our simulated species as described 
previously. The fishing suitability raster was used to determine the 
probability of each cell being sampled using the ‘weights’ feature 
within the sampleoccurrences function in the virtualspecies package. 
Below is an overview of the different sampling scenarios, and the full 
details of the generation of these fishing suitability rasters are given 
in Supporting Information, Material S1.

1. Random sampling: This represents our control, unbiased sce-
nario and is closest to fishery- independent sampling. In this 
scenario, each cell within our study area (ROMS domain) has 
an equal probability of being sampled regardless of the un-
derlying abundance of the virtual species.

2. Preferential sampling: The probability of a cell being fished is a 
function of the habitat suitability for the target species in the 
previous year (y- 1), where the greater the habitat suitability the 
higher the probability of fishing occurring.

3. Constrained by distance to port: Suitable fishing areas are deter-
mined by distance to home ports and habitat suitability for tar-
get species. We built fishing suitability rasters for eight different 
distances from port scenarios: two where fishing was limited to 

just around northern CCS ports (Ports Northern), two limited to 
around ports in the middle of the ROMS domain (Ports Middle), 
two limited to around southern ports (Ports Southern), and two 
which were not limited (e.g. fishing enabled around all ports; Ports 
All). One of the scenarios for each pair simulated an offshore fish-
ery where fishing suitability was high up until about 300 miles 
from a port (Offshore), and one scenario simulated a nearshore 
fishery where fishing suitability declines after about 50 miles from 
a port (Nearshore).

4. Constrained by bycatch avoidance: Suitable fishing areas are de-
termined by habitat suitability of the target species, while avoid-
ing areas of high bycatch risk (e.g. high habitat suitability for 
simulated bycatch species).

5. Constrained by closed area: Suitable fishing areas are determined 
by habitat suitability of the target species, while taking into ac-
count that no fishing activity can occur within a static closed area. 
We built fishing suitability rasters for three closed area scenarios 
in which the size of the closed area varied (referred to as Closed 
Area Small, Closed Area Medium, and Closed Area Large).

These five general types represent simplified behaviour ob-
served in actual fisheries, including some on the US West Coast. 
Preferential sampling represents the most ubiquitous fisher be-
haviour, whereby fishers follow their target species to maximize 
profitability (van Putten et al., 2012). Distance to port sampling is 
observed in the Pacific sardine fishery (Rose et al., 2015; Smith, 
Muhling, et al. 2021), and closed area and bycatch avoidance sam-
pling is observed and expected in the California drift gillnet sword-
fish fishery (Hazen et al., 2018; Urbisci et al., 2016). We note that 
fishery- dependent data arises from additional processes beyond 
those included in the simulation model here (e.g. vertical distribu-
tion, vessel attributes, targeting and reporting rates in multispecies 
logbooks and area vs. effort expansion), and that there is a large lit-
erature on dealing with those additional complexities that we do not 
address in the SDMs fit in this study (Stephens & MacCall, 2004; 
Maunder & Punt, 2004; Maunder et al., 2020).

2.3  |  Estimation models: Fitting species 
distribution models

We fit the simulated data using two types of SDMs commonly 
used in ecological modelling: a correlative statistical model (gen-
eralized additive model, GAM; mgcv R package, Wood, 2017) and 
a machine learning model (boosted regression tree, BRT; gbm R 
package, Elith et al., 2008). All SDMs were constructed as delta 
models, in which separate models are used to model the encounter 
probability (presence– absence) and the expected abundance con-
ditional on encounter. All SDMs were trained on data from years 
1985– 2010, which we refer to as the ‘historical’ period, and then 
the fitted models were used to predict species biomass using pro-
jected environmental data for years 2011– 2100. The SDMs were 
fit including three environmental covariates (SST, MLD, surface 
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    |  7KARP et al.

chlorophyll- a) (Table S2). We use surface chlorophyll- a instead of 
the distribution of prey or zooplankton to avoid a perfectly speci-
fied model and mimic real- world conditions where some environ-
mental correlates are imperfectly known. The distribution of the 
virtual species in the OM is directly influenced by SST, MLD, and 
the distribution of its prey species which is influenced by zoo-
plankton and SST. The SDMs include SST and MLD but include 
surface chlorophyll- a as an indirect and imperfect proxy for prey 
or zooplankton. Because satellite- derived chlorophyll- a data are 
typically available (and prey and zooplankton data are not), this 
also approximates how similar models might be applied in a real- 
world scenario.

We evaluated the impact of alternative parameter configura-
tions, such as including space and time covariates, on the relative 
influence of the different sampling scenarios on SDM performance 
(see Table S2 for the alternative configurations explored), but includ-
ing these covariates added little to explained information (Table S2) 
and did not improve the spatial patterning in residuals (Figure S1) 
or alter the relative impact of the different sampling scenarios on 
model performance (Figure S2). This was likely due to the fact that 
the structure of our operating model could be well explained by dy-
namic ocean variables and did not contain much spatially structured 
residual information, such as known spawning grounds. Therefore, 
we only present and discuss the results of the BRT and GAM envi-
ronmental covariate models throughout the rest of this paper.

2.4  |  Assessment of climatic bias in the 
sampling scenarios

In order to assess the potential biases in estimates of environmental 
conditions created by fishery- dependent sampling, we assess both 
the climatic bias and climatic novelty. The climatic bias compares 
the sampled environmental conditions to environmental conditions 
throughout the entire ROMS domain during the historical sampling 
period (1985– 2010). Climatic novelty is a measure of how similar the 
environmental conditions captured in each of the sampling scenarios 
are to the projected future environmental conditions present across 
the entire domain (i.e. a measure of extrapolation).

We used two metrics to obtain climatic bias and novelty, Cohen's 
d (cd) and Hellinger Distance (HD). Cohen's d is a measure of the dis-
tance between the means of two groups, while the HD is a measure 
of the difference between two probability distributions (see Cohen, 
1988; Legendre & Legendre, 2012; Supplemental Methods for for-
mulas). The HD measures how much information is contained in one 
distribution relative to another with values in the range [0,1]. Values 
of HD = 1 indicates that the two distributions have no common in-
formation (e.g. no data overlap), whereas values of HD = 0 indicates 
that the two distributions have the same information (e.g. complete 
data overlap). Johnson and Watson (2021) propose HD values >0.5 
as a threshold of novelty, where the distributions become more dis-
similar than they are similar. We used both of these two metrics be-
cause while Cohen's d can quantify the direction and magnitude of 

the difference between means, it does not capture differences in 
the shape of the distributions. In contrast, though HD does not cap-
ture the direction of the difference, it can measure differences in the 
mean and shape of distributions. Therefore, the two metrics com-
bine to provide an overall picture of the climatic bias and novelty.

2.5  |  Model performance: Predicting abundance, 
centre of gravity and spatial distribution

Model estimates for species abundance and centre of gravity were 
compared to the simulated data, which represents the known truth, 
and fit and performance were evaluated using several metrics, in-
cluding root mean squared error (RMSE) and Spearman correlation 
coefficient for continuous metrics, and the area under the receiver 
operating characteristic curve (AUC) for the presence/absence por-
tions of the SDMs. AUC is a common metric to assess SDM accuracy, 
with values >0.75 suggesting the model provides good discrimina-
tion between locations where the species is present and where it 
is absent (Elith et al., 2006). SDM outputs were also compared by 
visually examining the predicted spatial distributions, and the model 
response curves for each environmental covariate (Supporting 
Information). For comparing performance through time, we broke 
the future period into three timeframes, early- century (2011– 2039), 
mid- century (2040– 2069) and late- century (2070– 2100).

3  |  RESULTS

3.1  |  Environmental variability, sampling scenario 
climatic bias and novelty

The environmental variables used in the operating and estimation 
models exhibited both spatial and temporal variability. Surface 
chlorophyll, zooplankton and MLD showed a nearshore- offshore 
gradient, with surface chlorophyll and zooplankton concentrations 
being greater nearshore, while MLD was greater offshore (Figure 3). 
Temperature exhibited a north– south gradient, with higher temper-
atures in the southern portion of the domain during the historical 
period but increasing throughout the domain during the future pe-
riod (Figure 3). In general, MLD, zooplankton and surface chlorophyll 
all decreased during the projection period (Figure 3). The simulated 
species biomass built using these environmental variables (i.e. in 
the operating model) also showed strong spatial patterning and was 
higher in southern and offshore waters. During the projection pe-
riod, biomass of the simulated species increased in the northern part 
of the domain and decreased in the southern portion.

The geographic spatial pattern of the different sampling sce-
narios varied within the ROMS domain (Table 1; Figure 4), leading 
to differences in the environmental conditions captured in their 
samples. The random sampling scenario, not surprisingly, covered 
the largest geographic area, covering almost 90% of the ROMS do-
main (Table 1; Figure 4,), resulting in a wide range of environmental 
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8  |    KARP et al.

conditions being sampled, and the lowest climatic biases across 
all environmental parameters (Table 1; Figure 5). The most biased 
designs were the distance from port sampling scenarios, particu-
larly the Northern Ports Only and Southern Ports Only sampling 
regimes, followed by the nearshore pair of the Middle Ports and 
All Ports Only scenarios (Table 1; Figure 5). These sampling sce-
narios were the most limited in their geographical coverage, being 
restricted latitudinally and/or longitudinally (i.e. in the nearshore- 
offshore direction). Additionally, the Northern Ports Only sam-
pling scenarios were cold- biased (cd = 0.47 and cd = 0.73) with 
greater sampling effort at the low temperatures and poor sam-
pling at the high temperatures, whereas the Southern Ports Only 

sampling scenarios were warm- biased (cd = −0.71 and cd = −0.97) 
(Table 1; Figures 5 and S2) with greater sampling at the high- 
temperature extremes.

In general, the environmental conditions became increasingly 
novel over time relative to the environmental conditions rep-
resented in each sampling scenario during the historical period 
(Table 2; Figure 5). For all sampling scenarios except Ports Southern 
Nearshore and Offshore, the climate novelty (HD and Cohen's d) in-
creased through time for chlorophyll and temperature, with the larg-
est climate novelty occurring in the late- century period (Figures 5 
and S3– S5; Table 2), while climate novelty (HD and Cohen's d) for 
MLD remained low and relatively unchanged for all future time 

F I G U R E  3  Maps and time series of dynamically downscaled environmental covariates projected to 2100. Maps show the average 
historical spring conditions for the dynamically downscaled environmental and biological covariates used in the operating model and/or the 
estimation models (mixed layer depth, SST, zooplankton, prey abundance and chl surface), and distribution of the simulated species biomass 
(kg) from 1985 to 2010. The time series plots show the spatially aggregated average annual spring conditions for the entire simulation time 
period (1985– 2100). The red vertical line at 2010 indicates the beginning of the forecast period, and the red vertical line at 2070 indicates 
beginning of the late- century period. The dashed lines represent the mean ± 1 SD.
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10  |    KARP et al.

periods (Table 2). In the early century (2011– 2039), environmen-
tal conditions were novel for at least one environmental variable 
used in the estimation model relative to the conditions captured 
by three of the sampling scenarios, Ports Northern Nearshore, 
Ports Northern Offshore and Port Southern Nearshore. In the mid- 
century (2040– 2069), the conditions became less novel relative to 
the Port Southern Nearshore sampling data, but we saw the emer-
gence of novel conditions relative to the Middle Ports Nearshore 
sampling scenario for two environmental variables (temperature and 
chlorophyll; Table 2) and an increase in novelty relative to the Ports 
Northern Nearshore and Offshore scenarios. By the late- century 
period (2070– 2100), temperature conditions were approximately 
novel (HD ~ 0.5) and warmer (Figure 5, bottom panel, Table 2) than 
captured by all of the sampling scenarios during the historical pe-
riod. Additionally, conditions were novel for two environmental pa-
rameters (temperature and chlorophyll) for four sampling scenarios, 
Ports Northern Nearshore and Offshore, Port Middle Nearshore 
and Ports All Nearshore during the late- century period (Table 2). 
The Ports Southern Nearshore and Offshore sampling scenarios are 
unique in that the HD was >0.5 for temperature during the histori-
cal sampling period (Figure 4, top panels), but then declines into the 
early-  and mid- century, before increasing slightly again in the late- 
century period. While the southern sampling scenarios were warm 
biased relative to historical temperatures throughout the entire pre-
diction domain, those warm- biased temperatures become more rep-
resentative of the full domain in the future.

3.2  |  SDM model fit and predictive skill

SDMs generally fit well to the presence– absence training data 
generated from the simulated fishery- independent and fishery- 
dependent sampling scenarios with all AUCs >0.78 for the BRTs 
(Araujo et al., 2005; Table 1). However, there was a noticeable dif-
ference in the predictive performance for models fit to data from the 
Southern Nearshore and Offshore sampling scenarios, particularly 
for the GAMs. Most sampling scenarios tracked the true abundance 
well during the historical period, except for the two Southern Ports 
Only scenarios which overestimated the true abundance (Figure 6). 
The Ports Southern Nearshore model had the lowest AUC values 
(0.54 and 0.78 for the GAM and BRT respectively; Table 1). One 
would not normally project a model which had an AUC of 0.54 as 
that indicates poor fit (Araujo et al., 2005; Elith et al., 2006; Swets, 
1988); however, we retained the model for the purposes of this 
simulation.

The ability of the SDMs to replicate the known environmental 
affinities of the simulated species was best for models fit with the 
less climatically biased sampling designs (Figures S7– S14). However, 
only the Random and Ports Southern Nearshore sampling scenar-
ios were able to predict the dome response curve for temperature, 
while other scenarios overpredicted the positive impact of high 
temperatures on the virtual species abundance (Figures S7 and 
S8). The fitted response curves generated through all other sce-
narios showed increasing positive partial effects on biomass at high 

F I G U R E  4  Sampling locations for each sampling scenario during the training period 1985– 2010 used to fit the estimation models. The 
black dots indicate the locations of the ports used for the distance from ports scenarios. The percentages shown in each facet indicate the 
percentage of the ROMS domain covered by each sampling scenario based on the area of a concave hull around each set of sampling points.
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    |  11KARP et al.

temperatures, instead of the decline observed in the true species 
response curves above 17°C. This result was most pronounced for 
the Ports Northern Offshore, Northern Nearshore, and Middle 
Nearshore sampling scenarios, which is likely due to the fact that 
these scenarios sampled were cold- biased (positive Cohen's d; 

Table 1), sampling only low to mid- temperature waters and did not 
capture the higher temperature ranges. Models fit to data from the 
Ports Southern Nearshore scenario, however, were better able to 
capture the species temperature preferences at higher tempera-
tures, but not at lower temperatures (Figures S6 and S7).

F I G U R E  5  Physical climate bias (top row) and climate novelty (bottom three rows) as a function of sampling scenario. Difference in 
mean value (Cohen's D) versus difference in the sampling distribution compared to the distribution of the environmental conditions across 
the entire domain (Hellinger distance). Sampling data with a distribution of climate values identical to the climate values across the domain 
would be located at (0, 0). The size of each point is scaled by the RMSE each time period averaged over the GAM and BRT models for each 
sampling scenario. Negative values of Cohen's D (to the right of the vertical line at x = 0) indicate that the mean value for a parameter is 
greater in the sampling scenario compared to the full domain. The horizontal line at y = 0.5 indicates the threshold for novelty.
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12  |    KARP et al.

3.3  |  SDM projection performance

In our study, model performance (RMSE) tended to decline with in-
creasing HD (Figure S15), and in general, SDM performance (as de-
termined by RMSE, correlation, model uncertainty, and spatial error) 
was the worst during the period when climatic bias and novelty was 
greatest. For most scenarios, this occurred during the late- century 
period, but for the two Southern Ports Only scenarios it was during 
the historical training period.

Many of the models fit to data collected from a fishery- 
dependent sampling scenario (Preferential, Bycatch, Closed Area 
Small, Closed Area Medium, Closed Area Large, Ports All Offshore, 
Ports Middle Offshore) performed comparably to the Random sam-
pling scenario, tracking the true biomass well during the early-  and 
mid- century projection periods (Table 3; Figure 6a,b). However, 
these sampling scenarios exhibited a more pronounced decline in 
performance (increasing RMSE (Table 3; Figure S16), decreasing 
correlation (Figure S17), and increasing uncertainty (Figure S18)) 
during the late- century period compared with the random sam-
pling scenario (Table 3). Models built with more climatically bi-
ased training data performed less well. The worst performing 
models were those fit to data collected from the Ports Northern 
Nearshore, Ports Northern Offshore, Ports Middle Nearshore, 
Ports Southern Nearshore and Ports Southern Offshore sampling 
scenarios (Table 3; Figure 6a,b). An interesting observation, how-
ever, is that while performance declined throughout the projection 
period for Ports Northern Nearshore, Ports Northern Offshore 
and Ports Middle Nearshore, it improved somewhat for the Ports 
Southern Offshore and Ports Southern Nearshore scenarios, 

probably because environmental conditions were actually becom-
ing less novel (compared to those sampled) for the southern sam-
pling scenarios.

Models that were best able to track biomass during the early 
and mid- century periods were also best able to track the true cen-
tre of gravity during the early- century and beginning of the middle- 
century periods (Preferential, Bycatch, Closed Area Small, Closed 
Area Medium, Closed Area Large, Ports All Offshore, Ports Middle 
Offshore; Figure 7a,b). These models predicted centre of gravities 
within 1 degree latitude on average of the true centre of gravity 
through the early and mid- century, before diverging from the true 
centre of gravity trend and beginning to underestimate the north-
ward shift by more than 1 degree during the late- century periods 
(Figure 7b). The most highly climatically biased scenarios (Ports 
Middle Nearshore, Port Northern Nearshore and Port Northern 
Offshore) on the other hand began underestimating the true centre 
of gravity by more than 1 degree starting in the mid- century and by 
the late century they underestimated the true centre of gravity by 
as much as 2.4– 3.2 degrees. The Southern Nearshore and Offshore 
scenarios were unique in that they overestimated the centre of grav-
ity by almost 2.6– 2.7 degrees during the historic period and then 
underestimated the centre of gravity throughout the future periods 
(Figure 6b).

Spatially explicit predictions of biomass were also comparatively 
similar across sampling procedures and resembled the true abun-
dance distribution during the historical and early and mid- century 
future periods (Figures 8 and S19– S22). In the late- century period, 
all sampling scenarios overpredicted the true biomass in the south-
ern, warmer part of the CCS. The exception to this was models fit to 

TA B L E  2  Hellinger distance (HD) for all environmental parameters, sampling scenarios and future time periods.

Sampling scenario

Early century: 2011:2039 Mid century: 2040– 2069 Late century: 2070– 2100

Temp MLD Chl Temp MLD Chl Temp MLD Chl

Random 0.16 0.07 0.06 0.36 0.08 0.09 0.54 0.12 0.18

Preferential 0.38 0.15 0.24 0.42 0.18 0.29 0.54 0.19 0.36

Port Southern Offshore 0.48 0.24 0.30 0.46 0.23 0.36 0.50 0.20 0.43

Port Southern Nearshore 0.51 0.42 0.32 0.49 0.38 0.37 0.49 0.35 0.43

Port Northern Offshore 0.53 0.23 0.38 0.67 0.24 0.43 0.84 0.23 0.51

Port Northern Nearshore 0.60 0.34 0.42 0.75 0.31 0.48 0.90 0.29 0.56

Port Middle Offshore 0.46 0.19 0.32 0.49 0.21 0.37 0.63 0.22 0.45

Port Middle Nearshore 0.48 0.23 0.48 0.56 0.24 0.53 0.73 0.23 0.60

Port All Offshore 0.37 0.18 0.30 0.41 0.19 0.36 0.54 0.18 0.44

Port All Nearshore 0.28 0.21 0.41 0.39 0.19 0.45 0.58 0.17 0.53

Closed Area Small 0.39 0.14 0.24 0.42 0.16 0.29 0.53 0.16 0.36

Closed Area Medium 0.39 0.14 0.23 0.41 0.17 0.28 0.51 0.17 0.34

Closed Area Large 0.42 0.14 0.24 0.44 0.16 0.28 0.51 0.16 0.34

Bycatch 0.34 0.16 0.21 0.40 0.19 0.23 0.54 0.21 0.27

Note: The HD for the future periods provides an indication of the novelty of the environments during those future periods relative to the 
environment conditions captured by each sampling scenario during the historical period. The colours represent the degree of climate novelty, with 
novelty increasing as the colors move from green (lowest), to yellow, to red (highest).
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data collected under the Ports Northern Nearshore, Ports Northern 
Offshore, Ports Middle Nearshore and Ports All Nearshore sampling 
scenarios, which overpredict the biomass of the species in the south-
ern part of the ROMS domain throughout the entire time series, with 
the greatest overpredictions in the late- century period. Additionally, 
models fit with data collected under the Ports Southern Nearshore 
and Offshore sampling scenarios overpredict the biomass in the 
northern part of the domain throughout the time period (Figures 8 
and S19– S22), as well as overpredicting the biomass in the southern 
part in the middle and late century. Again, this likely occurred be-
cause models fit with Southern Ports Only data do not accurately 
represent the species temperature response curve at lower tem-
peratures; similarly, models fit using the other sampling scenarios 
do not accurately represent the species temperature response curve 
at intermediate and higher temperatures, and this is particularly 
true for the two Northern Only and the Middle Nearshore Ports 
scenarios.

4  |  DISCUSSION

As climate change leads to increasingly novel ocean conditions 
(Gruber et al., 2021; Smith et al., 2022), it is important to understand 
how fish and other marine organisms will respond to those changes. 
Realistic projections of potential future species distributions are im-
portant to categorize species responses and to be able to prepare 
for and sustainably manage for distribution shifts. However, there is 
limited understanding of how well models perform when projecting 
decades into the future, particularly when training data come from 
varied sources, such as with fishery- dependent data. In this study, 
we showed that use of non- randomly sampled data can have rela-
tively minor impact on SDM performance for near-  to medium- term 
projections as long as it samples well the underlying environmen-
tal conditions present. We further established that, regardless of 
sampling design, SDM performance tends to degrade for long- term 
projections (RMSE = 5.5– 8.6 vs. RMSE = 5.3– 12.6, during early and 

F I G U R E  6  Biomass time series for 1985– 2100 showing the true biomass, each of the 14 scenarios for the GAMs and BRTs (a) and the 
difference between the true biomass and biomass predicted with each of the scenarios across the time series (b).
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late century respectively), due to the higher climatic novelty of the 
future environmental conditions relative to the sampling data.

4.1  |  Differences among sampling scenarios

A major concern with fishery- dependent data used to estimate spe-
cies distributions is the potential biases due to the unequal sampling, 
as fishers tend to preferentially target locations with high density 
of specific fishes and respond to external economic and manage-
ment factors rather than randomly sampling. However, our results 
show that data generated from fishery- dependent sampling can 
still result in SDMs with performance comparable to SDMs gener-
ated from random samples several decades into the future, given 
specific forms of preferential sampling which result in low climate 
bias and novelty (e.g. HD <0.5). Preferential, Closed Areas, Bycatch 
and Ports Middle Offshore, Ports All Offshore all had low climate 
bias in the training data, and models fit to these data performed 
similarly to each other, and to the Random sampling scenario be-
fore degrading around mid to late century (e.g., RMSE 5.55– 6.99 vs 
5.47– 5.5 respectively). On the other hand, the Southern Ports Only 
and Northern Ports Only scenarios had the highest climate bias or 
novelty and performed poorly throughout the projection period. 
By evaluating our range of scenarios, generalizations can be made 
about the causes of poor SDM performance and magnitude result-
ing from biased sampling. These generalizations relate to how well 
fishery- dependent data leads to correctly specified species- climate 
response curves, and how well these data represent the environ-
mental conditions that exist in the data set used for prediction.

Our findings were consistent with numerous studies which 
show that restricting the range, and particularly the extremes, of 
environmental data present in a sample can affect the calculation 

of species- climate response curves and can lead to erroneous pro-
jections (Hortal et al., 2008; Nazzaro et al., 2021; Støa et al., 2018; 
Tessarolo et al., 2014; Thuiller et al., 2004). This is likely to occur 
in systems with strong geographic or temporal gradients in envi-
ronmental variables when only a portion of the domain or a por-
tion of the habitat or only certain seasons or years are sampled. 
For example, this was particularly evident for the Northern Ports 
Only and Southern Ports Only scenarios, where the environmental 
range covered in the samples was restricted to either cold (north-
ern ports) or warm (southern ports) waters. This led to inaccurate 
prediction of the species responses to warm temperatures for the 
northern ports scenario, and to cold temperatures for the south-
ern port scenario. If a response to a particular environmental co-
variate is non- linear (e.g. our domed preference for SST, Table S1), 
high sampling coverage across a range of covariate values may be 
required to fit that response correctly. Often there will be reduced 
data coverage and increased model uncertainty at the limits of this 
response. This uncertainty will be exacerbated if extrapolation of 
this response is required during prediction or projection, which can 
be seen in our study in Figure S18. Therefore, one should be careful 
or critical when an estimated relationship to an environmental vari-
able is approximately linear across the training data, particularly if it 
is a positive linear relationship.

Training data quality is also acknowledged to be a key issue 
determining the transferability of SDMs to novel locations or en-
vironments (Elith & Leathwick, 2009; Sequeira et al., 2018; Yates 
et al., 2018). We measure this as both climatic bias (how well the 
historical climate was sampled in our domain of interest) and climatic 
novelty (how well the sampled historical climate represents future 
conditions used for projection). We also estimated the spatial area 
covered by each sampling scenario (Figure 4), and this tended to be 
a good indicator of the subsequent climatic bias, with scenarios that 

Sampling scenario

2011– 2039 2040– 2069 2070– 2100

GAM BRT GAM BRT GAM BRT

Random 5.47 5.50 5.55 5.52 5.50 5.30

Preferential 5.61 5.79 6.56 6.25 8.15 6.56

Port Southern Offshore 6.47 7.50 6.60 6.39 7.35 6.09

Port Southern Nearshore 7.46 8.85 7.26 7.07 8.05 6.37

Port Northern Offshore 7.29 7.31 9.73 7.89 12.59 8.24

Port Northern Nearshore 6.67 6.84 8.24 7.12 9.98 7.02

Port Middle Offshore 5.61 5.78 5.97 5.97 6.49 6.08

Port Middle Nearshore 6.47 6.27 7.97 6.72 9.69 7.11

Port All Offshore 5.67 5.69 6.28 5.98 6.99 6.28

Port All Nearshore 6.26 6.17 7.28 6.30 8.41 6.39

Closed Area Small 5.62 5.68 6.40 5.88 7.39 5.98

Closed Area Medium 5.55 5.57 6.23 5.79 7.16 5.92

Closed Area Large 5.61 5.63 6.45 5.94 7.64 6.03

Bycatch 5.84 5.81 6.99 6.25 8.60 6.57

Note: The colours indicate the relative size of the error among sampling scenarios, with greener 
colours reflecting lower errors, redder colours reflect higher errors, and yellows in between.

TA B L E  3  Root mean squared error 
(RMSE) of modeled and ‘true’ biomass, by 
time period and sampling scenario.
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sampled a higher proportion of the ROMS domain, tending to have 
lower climatic bias of the sample; however, this was not always the 
case (Table 1). This is consistent with previous studies which con-
clude that the underlying environmental conditions sampled is more 
important than the spatial structure of samples in terms of effecting 
SDM performance (Tessarolo et al., 2014) and supports the use of 
a climatic bias measure, such as the HD, as a metric of data quality 
and potential indicator of SDM performance rather than the spatial 
coverage of a sample set.

Higher climatic bias in the sample data led to either poorly fit 
models (e.g., Southern Port Nearshore, AUC = 0.53, RMSE aver-
age = 9.34) and/or poor performance, and more quickly degrad-
ing performance, when projecting into future, novel conditions. 
Models fit to data from sampling scenarios with high climatic bias 
during the training period (Northern and Southern Ports only, 
Middle Nearshore and All Nearshore) resulted in RMSEs during 

the early and mid- century period that were 14– 75% greater rela-
tive to random sampling, whereas the less climatically biased sce-
narios resulted in RMSE that were only 1– 18% greater compared 
with the random sampling scenario. By the late century period, 
all SDMs except for those fit to the Random sampling scenario 
showed declining performance; however, this decline in perfor-
mance was greater for the more climatically biased sampling with 
RMSE increasing to 33– 128% greater than the random sample 
compared with only 11– 56% greater for less biased scenarios. This 
suggests that SDMs will likely show degrading performance over 
time given high climatic novelty in future periods, although ran-
dom sampling can help mitigate this (Figure 6; Table 3). We note 
that the amount of extrapolation into the future, and thus the im-
pact on model predictive skill, varies among climate models (see 
Brodie et al., 2022) and scenarios. In our simulation, we used the 
HadGEM2- ES ESM, which exhibits some of the fastest warming 

F I G U R E  7  Latitudinal centre of gravity time series for 1985– 2100 showing the latitudinal centre of gravity, each of the 14 scenarios for 
the GAMs and BRTs (a) and the difference between the true centre of gravity and centre of gravity predicted with each of the scenarios 
across the time series (b).
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and productivity declines for the CCS (Pozo Buil et al., 2021) and 
thus higher novelty (Smith et al., 2022). Thus, while in our study 
SDM projection performance began to degrade mid- century for 
many scenarios, other studies may see performance degrade ear-
lier or later depending on which ESM is used (Brodie et al., 2022). 
Our results suggest that this degradation in performance may 
occur when the conditions for at least one climatic variable used 

in the model become more dissimilar than similar (i.e. HD ~ 0.5) to 
the conditions represented in the training data.

Our results are based on a simplified simulation framework de-
signed to test the predictive performance of SDMs fit to simulated 
fishery- dependent data, and as such there are several important as-
sumptions and caveats to note. First, the scenarios simulated in our 
study are a simplified version of fishery- dependent data collection. 

F I G U R E  8  Maps of difference in the predicted species distribution averaged across the historical period (1985– 2010; top panel) and 
each of the future periods (2011– 2039, 2040– 2069 and 2070– 2100). Here, we show the spatial differences between the predicted 
distributions from two sampling scenarios with low climate bias, the random and preferential sampling, and three sampling scenarios with 
high climate bias, ports southern nearshore, ports middle nearshore and ports northern nearshore, fit with a GAM, compared with the true 
simulated distribution. See Figures S19– S22 to see spatial differences for all sampling scenarios. Red areas indicate areas where the model 
overpredicts the biomass, and blue areas where the model underpredicts the biomass.
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There are several factors that we have not captured in our simula-
tion which can impact both where and how much fishermen catch 
(e.g. density dependence, interspecific interactions, catchability, 
fisher behaviour and market dynamics), and therefore the relative 
bias and performance of models fit to that data. Future studies could 
work to incorporate these dynamics into simulations. Additionally, 
we simulated a mobile pelagic species, which has the advantage of 
not having to consider benthic habitat requirements (the animal can 
just move to follow favourable conditions). Simulating benthic or de-
mersal species realistically might be more difficult. Additionally, how 
a species is distributed in space and time can be determined by more 
than just environmental conditions. Other important drivers could 
include, life history and the complexity of the life cycle, the presence 
of specific habitat requirements, trophic interactions and competi-
tion. For example, a diadromous species exhibiting natal homing may 
have clear thermal and other environmental preferences but have 
less ability to shift its distribution than a species which completes its 
entire lifecycle in the epipelagic zone. Exploring the impact of these 
additional drivers of species distributions on SDM performance 
given different sampling scenarios is beyond the scope of this study, 
but may be a fruitful endeavour for future simulations. Lastly, while 
our simulation focuses on the CCS, the general conclusions with 
regard to the relationship between the climatic bias of the training 
data and climatic novelty of the future conditions and performance 
of SDMs can be of use to other systems. However, we would expect 
that the specific sampling patterns that may lead to climatically bi-
ased data will depend on the spatial gradient of the environmental 
conditions and factors influencing species distributions and fishing 
patterns within a specific system.

4.2  |  Applications and recommendations

Although fishery- dependent data are inherently biased, they can 
still be useful for SDMs and projection, especially if we can account 
for this bias through careful model specification or by restricting 
predictions to the geographical or environmental space covered by 
the model training data (e.g. Crear et al., 2021). For example, warm-
ing is one of the key climate drivers in long- term projections. If our 
fishery- dependent observations cover a broad range of a species' 
thermal tolerance, and if the behaviour of the SDM near the upper 
thermal limit corresponds well with known physiological limits, then 
projections of habitat change due to warming are likely to be more 
accurate. This also applies to other important environmental drivers, 
such as dissolved oxygen and pH, and is in line with Elith et al. (2011) 
and Støa et al. (2018) which posit that good SDM performance relies 
on the distribution of the sampling effort being proportional to the 
actual frequency distribution of environmental conditions along all 
environmental variables of importance to the species, which can be 
indicated through the use of the HD and cd as done in this study. On 
the other hand, an SDM is less likely to provide realistic projections 
if the observations sample a relatively small portion of the species 
geographic or environmental range, if detectability on fishing gear 

is imperfect or inconsistent, or if SDM covariates do not represent 
key processes well (such as obligate prey following or other trophic 
interactions that are not directly linked to environmental variables).

We have shown that climatic bias and novelty are useful mea-
sures of impact of available observations on the performance of 
SDM projections. These or similar metrics (Mesgaran et al., 2014; 
Meyer & Pebesma, 2021; Smith et al., 2022) are critical compo-
nents of projection studies because they allow estimation of how 
no- analogue environmental conditions relate to predictive skill. 
However, consideration of how different modelling methods behave 
when extrapolated is also essential, as some are better suited to ex-
trapolation. The two methods used in this study (BRTs and GAMs) 
predict to novel conditions differently. GAMs (depending on how 
they are parameterized) can continue fitted trends into new envi-
ronments, whereas BRTs assume a constant relationship outside of 
the training data range (Zurell et al., 2012). Our results show that 
GAM and BRT projections often diverged strongly towards the end 
of the 21st century for more biased sampling scenarios, as environ-
mental conditions became more novel. Although this is particular 
to our study, projections from BRTs were generally closer to the 
simulated truth, probably because of their more conservative be-
haviour under extrapolation. Other studies (e.g. Derville et al., 2018; 
Moore et al., 2016; Zurell et al., 2012) indicate that BRTs do not 
always outperform GAMs, and that the best SDM for a particular 
purpose tends to be highly species-  and ecosystem- specific. Overall, 
the use of an ensemble of different SDMs is likely useful for cap-
turing some of the uncertainty contributed by model extrapolation 
behaviour when predicting in novel environments. Predictions from 
different types or parameterizations of SDMs can be ensembled and 
weighted based on some measure of model fit or uncertainty (e.g. 
Yao et al., 2018).

Accounting for bias in fishery- dependent data through model 
specification has a rich history, driven by models aimed at catch- 
per- unit- effort standardization and calculating abundance indices 
(Maunder & Punt, 2004; Thorson et al., 2020). Spatial and tempo-
ral biases in these data (such as a spatial shift in fishing effort) are 
often accounted for by including spatial and temporal covariates 
(Ducharme- Barth et al., 2022), which are used to explain unknown 
biological processes or to act as latent variables to explain residual 
dependencies. These studies focus on standardizing observed data 
to explain historic patterns of spatial distributions and abundance. 
However, these spatial– temporal standardization tools may be un-
suitable for long term projection of species distributions, given that 
static spatial surfaces and covariates incorporating year effects used 
to explain the past may not extrapolate well to future conditions. 
Indeed, some covariates can act as surrogates for variables or pro-
cesses that may diverge over time and result in poor projections 
of species distributions. And yet, the benefits of spatial– temporal 
modelling not only include the potential to reduce bias in fishery- 
dependent observations but also the ‘borrowing’ of nearby infor-
mation to improve the accuracy of spatial– temporal extrapolation 
(Brodie et al., 2020; Thorson, 2019 [VAST]). We note that when we 
evaluated the impact of including space and time covariates on the 
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relative influence of the different sampling scenarios on SDM per-
formance, including these covariates added little to explained infor-
mation (Table S3), and did not improve the spatial residual pattern 
(Figure S1) or alter the relative impact of the different sampling sce-
narios on model performance (Figure S2). However, there is potential 
for other parameterizations of the space and time covariates to have 
different results and considering the potential benefits and suc-
cesses in reducing bias seen in other studies, further exploring the 
use of spatio- temporal modelling for SDMs using fishery- dependent 
data is still warranted. Another approach that has shown promise 
to reduce bias from preferential sampling data is to use a model-
ling framework where the state variable of interest (e.g. population 
biomass or abundance) and the sites chosen for sampling are jointly 
modelled using a dependence covariance matrix (Conn et al., 2017). 
Future work could also consider this analytical approach to explicitly 
account for biases from fishery- dependent sampling.

The challenge remains, then, to decide how much extrapolation 
in time (years or seasons) or space is acceptable, and these variables 
can be included in measures of novelty (Smith et al., 2022) to aid 
this decision. However, in terms of projecting into novel conditions, 
geographic and temporal separation between the reference and tar-
get system appears less important compared with environmental 
dissimilarity (Yates et al., 2018). In this paper we show how Hellinger 
Distance can be used as a measure of this environmental dissimilar-
ity, with values around the 0.5 threshold proposed by Johnson and 
Watson (2021) serving as an indication of when projections (trans-
ferability) may become problematic. Again, we note that the amount 
of extrapolation into the future that might be appropriate may vary 
among climate models and exploring the dissimilarity (or similarity) 
in future climate projections could be informative to future manage-
ment scenario planning.

When projecting SDMs built from fishery- dependent data, we 
recommend to (1) collect training data from the broadest range 
of environmental conditions relevant for a species (Pennino et al., 
2016), which may require combining fishery- independent and de-
pendent data sets (e.g. Alglave et al., 2022; Rufener et al., 2021); (2) 
use one or more diagnostics to identify biased data, severe extrap-
olation, and potentially inaccurate predictions (e.g. our Hellinger D 
threshold); (3) evaluate the plausibility of the partial species- climate 
responses, especially at the limits of the fitted data and when ex-
trapolated to novel data; (4) explore spatio- temporal modelling, and 
other analytical approaches, to reduce bias in training data, but eval-
uate the benefits against the reduced flexibility of spatial– temporal 
variables for long- term projection; (5) measure and communicate 
uncertainty of projections, but recognize that if data are biased and 
a model is poorly specified then uncertainty may be underestimated.

5  |  CONCLUSION

We show that SDMs built using data collected from a simulated 
fishery can produce projections of species distributions similar to 
SDMs fit with data collected from a random sampling scheme, as 

long as the sampling adequately captures the underlying environ-
mental conditions present in the prediction domain. Being able to 
diagnose and understand when fishery- dependent data is of high 
enough quality (e.g. low climate bias and novelty, in addition to ac-
curate location and catch reporting) to produce accurate predictions 
can help open the door for scientists and managers to use more of 
the observational data available to them and to more fully under-
stand the uncertainty associated with using this data for predictions 
and projections of species distributions.

The use of fishery- dependent data, either on its own or in con-
junction with fishery- independent data, has several benefits. For 
example, fishery dependent data are often collected at higher spa-
tial and temporal resolutions than fishery- independent survey data. 
Unbiased fishery- dependent data (e.g. with low climate bias and 
novelty), or fishery- dependent data bias corrected through the use 
of spatio- temporal modelling as discussed above or other bias cor-
rection approaches, may thus be our best way of linking fish distri-
butions to seasonal and spatial processes such as physical drivers of 
recruitment (e.g. preconditioning of mature females; Haltuch et al., 
2020; Tolimieri et al., 2018) or seasonal/long- term changes in habitat 
characteristics like temperature, dissolved oxygen, stratification, sea-
scape characteristics (Pennino et al., 2016). Additionally, having dis-
tribution data from many seasons will help to parameterize seasonal 
species distribution expectations in end- to- end models that support 
ecosystem- scale management strategy evaluations, for example 
focused on robustness of management structure to species distri-
bution shifts driven by climate events and climate change (Kaplan 
et al., 2021). Synthesizing outcomes across fishery- dependent 
and independent data can help support the Ecosystem- Approach 
to Fisheries Management (EAFM) or Ecosystem- Based Fisheries 
Management (EBFM), through incorporating fishers' knowledge (e.g. 
local ecological knowledge) along with any additional data they may 
be able to collect in the future as ships of opportunity for monitoring 
environmental conditions. Finally, as costs and financial resources for 
fishery- independent surveys are increasingly limited in many areas, 
fishery- dependent data may be able to supplement information 
from surveys that are reduced or eliminated for budgetary reasons 
(though not without potential cost to the usefulness of the data).
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